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Abstract—We present a modified version of Extended Classifier
System (XCS) on a humanoid NAO robot. The robot is capable
of learning a complete, accurate, and maximally general map of
an environment through evolutionary search and reinforcement
learning. The standard alternation between explore and exploit
trials is revised so that the robot relearns only when necessary.
This modification makes the learning more effective and provides
the XCS with external memory to evaluate the environmental
change. Furthermore, it overcomes the drawbacks of learning
rate settings in traditional XCS. A simple object seeking task is
presented which demonstrates the desirable adaptivity of LCS
for a sequential task on a real robot in dynamic environments.

I. INTRODUCTION

A Learning Classifier System (LCS) is a genetic algorithms
based machine learning paradigm that usually combines tem-
poral difference [1] or supervised learning [2] with a genetic
algorithm [3] to solve problems [4]. Originally, learning in
LCS is modeled as an on-line process to adapt to an unknown
environment, and the solution to the target problem is rep-
resented as a population of condition-action-prediction rules,
maintained by the classifier system which tries to maximize
the actual reward from the environment by taking the selected
actions under the given conditions. Such a paradigm enables
incremental and on-line learning in dynamic environments
where a real robot should know the environmental changes and
react accordingly rather than to perform only preprogrammed
behaviors in static environments. In comparison to a purely
evolutionary approach, an LCS is faster to learn due to the
reinforcement learning techniques. In addition, its inherent
ability to generalize over the state-action space and its explicit
representation of the learned rules make the robots’ behaviors
easier to understand for human operators.

However, there are not many implementations of LCS on
real robots. Some applications are on simple robots with only
sonar or light sensors so that the robotic tasks are quite
limited and time consuming, which typically take several hours
and hundred of trials. This paper describes an application
of the popular accuracy-based LCS, XCS, on a widely used
advanced humanoid Nao robot that enables fast robot learning
and efficient human-robot interaction. The main contribution
of this paper is that we tailor the standard explore/exploit
learning framework of XCS for robotic tasks and propose
to use extra memory for the goal states achieved in exploit
trials. In addition, the prediction learning rate is found to
be the key factor that affects the relearning speed in a new

environment. The paper is organized as follows: Section II
introduces Learning Classifier Systems and related applications
on robots. Section III gives a detailed description of our
classifier system implementation for a humanoid Nao robot.
Section IV describes our robot experiments and analyzes the
results. Section V concludes the paper and discusses the future
work.

II. RELATED WORK

The original Learning Classifier System was invented by
Holland as a cognitive model [5]. However, there was hardly
a real implementation of LCS until Wilson introduced a sim-
plified version, ZCS, which keeps much of Hollands original
framework and has close relations to Q-learning [6]. There
followed the successful extended classifier system (XCS) [7],
an accuracy-based classifier system that differs from earlier
strength-based approaches in the way that it calculates the
accuracy of rules instead of the payoff. Detailed comparisons
of these two approaches are given in [8].

When applying LCS to real robotic tasks, more problems
need to be considered than in simulation environments. The
most important one is the time limit. Several thousands of trials
are hardly available for real robotic experiments [9]. The Inter-
active Classifier System (ICS) describes a fast learning method
for a mobile robot which acquires autonomous behaviors from
interaction between a human and a robot [10]. The influence
of time can be considered in the reward functions [11]. Other
inspiring applications of LCS on real robots include the robot-
shaping experiment [12], Fuzzy Classifier System (FCS) [13],
Neural Classifier System (NCS) [14], X-TCS [15], enhanced
LCS [16], and non-reactive LCS [17].

However, a large number of parameters in LCS are re-
sponsible for its performance. Therefore, parameter setting has
always been a big problem in LCS applications. For example,
the fitness sharing parameters need to be adjusted correctly
to enable ZCS perform optimally in simple multi-step maze
problems [18]. In comparison, XCS and X-TCS don’t require
such careful tuning of parameters to achieve optimal behavior
[11]. But improvements are necessary when XCS works in
noisy and dynamic rather than static environments where
separate learning rates are suggested for prediction update,
error update and fitness update in solving one-step multiplexer
problem with XCS [19].



Fig. 1. An overview of XCS

III. LEARNING CLASSIFIER SYSTEM ON NAO

A. The Platform

In our experiments, we used the academic version of
humanoid NAO robots. It is 58 cm tall and has an AMD Geode
500 MHz CPU, 256 MB SDRAM and an Embedded Linux
system. Ethernet or WiFi connections to computers are both
available. The forehead camera is used as the main input source
to the classifier system, and the movement of NAO’s head is
controlled by the classifier system which sends Urbi scripts
to the NAO with default APIs. In addition, the speakers on
its head enable text-to-speech function. Additional sensors for
further usage include microphones, gyrometers, accelerometer,
sonars, bumpers and also kinect.

A client-server architecture is chosen to control the NAO
remotely from a GUI on a computer. The sensory inputs of
the NAO are sent to the computer where images are processed
and action commands are given. The XCSlib [20] is modified
into the LCS controller here, which uses evolutionary search
and reinforcement learning to evolve complete, accurate, and
maximally general payoff map of an environment. A detailed
algorithmic description is given as follows.

B. An Overview of LCS on NAO

The XCS is modified in several ways to apply on NAO
robot. First, we propose to stop exploration when the NAO has
learned an optimal policy and continue with exploitation until
the environment change is detected. Second, consistent actions
are used in explore trials to speed up the learning process while
in exploit trials, the system remembers the goal state achieved
and the number of steps towards the goal state. In addition,
separate learning rates are used for prediction update, error
update and fitness update rather than the same constant value
in traditional XCS experiments. These features are explained
in Section III-D and Section III-E. An overview of XCS used
on NAO is given in Fig.1 [8].

C. Knowledge Representation

Generally, the current knowledge of the classifier system
is represented as a population [P] of N classifiers that are
basically condition-action rules. If N is fixed and this limit
is reached, old classifiers are deleted to make room for new
ones. At the first time step, [P] can be initialized empty
and new classifiers are created by a scheme called covering

[21] which guarantees the current input be matched by at
least one classifier’s condition part. Besides the condition and
action parts, each classifier in XCS maintains three important
statistics: p, the predicted reward of the classifier’s action; ϵ, an
estimate of the prediction’s error; F , the fitness of the classifier
used for rule discovery.

The traditional ternary language uses {0,1,#} for the con-
dition part and binary strings for the action part. Predic-
tion is usually initialized as described in [22]. Actually, the
representation depends on the chosen task. For example, in
Wilson’s Woods examples that a simulated robot moves in a
maze searching for food, a 3 bits binary string is preferred to
encode the 8 moving directions, while in TCS’s light-seeking
example, an ’Unordered Bound Representation’ is better for
the continuous sonar sensory inputs [23]. However, when the
input of the LCS is an image rather than proximity sensors,
it needs feature extraction to decide the length and value
of the input string. In our case, each input image is simply
segmented into 9 parts, each part thresholds the target pixels
and a standard binary representation is used.

D. Performance Component

The performance component controls the system’s behavior.
In Wilson’s XCS, either a pure explore trial or a pure exploit
trial is performed on each time step. Usually, the system
alternates between the two. In other words, learning happens
only in explore mode while evaluation happens in exploit
mode.

1) Explore Trials: A random action is usually selected from
the rules in the match set [M] to match the current sensory
input. However, random actions are inefficient for robots, e.g.,
moving back and forwards without changing its current state.
Therefore, consistent actions are adopted to avoid learning in
situations where the state of the robot remains the same after
one action. In other words, LCS matches an input to create a
match set [M] and an action set [A], then performs the selected
action until there is a significant change in sensory input. If
the new input still matches all the classifiers in [A], then it
continues with the current action. Else if none of the classifiers
in [A] matches the current input, [A] is deleted. Otherwise, a
probabilistic selection takes place among them.

2) Exploit Trials: The system deterministically selects the
highly recommended action with the highest prediction so that
an optimal action sequence is chosen to achieve the goal state.
However, if the environment changes, the system needs to
relearn the optimal policy. Traditionally, when some accurate
classifiers suddenly become inaccurate, the system decides that
the environment has changed. But this change might be not
significant enough that the old optimal policy still applies to
achieve the goal state. A more natural way is to carry out the
old optimal action sequence after the environmental change
and check if the goal state is still achieved. This requires a
change of the explore/exploit framework such that an extra
exploit trial is needed after the goal state is achieved in one
exploit trial. Otherwise, the system needs to keep a record of
every action sequence and store the optimal one, which is also



possible but involves additional memory operations. As XCS
has no internal memory, external memory is needed to store
the goal state and the number of action steps towards it.

E. Reinforcement Component

The reinforcement (or credit assignment) component dis-
tributes the incoming reward among the classifiers. For sequen-
tial tasks, updates only occur in the previous time step’s action
set [A]−1 because they make use of the prediction array on
the following time step (see equation (2)), except that during
the last trial of an episode, both [A] and [A]−1 are updated.
General Widrow-Hoff learning rule is used:

pj(a)← pj(a) + βp(P − pj(a)) (1)

where pj(a) is the system prediction of classifier j in [A]−1 if
its action a is performed, and 0 < βp ≤ 1 is the learning rate
controlling the prediction updates. P is the weighted sum of
the previous time step’s reward rt−1 and the maximal system
prediction P (ai) for action ai:

P = rt−1 + γmax
i

P (ai) (2)

where γ is the discount rate [8].

F. Rule Discovery Component

A rule discovery component applies a Genetic Algorithm
(GA) to the classifiers to update the current knowledge. In
sequential tasks, GA invocations occur in [A]−1 where the
Niche GA is triggered, which is a restricted mating scheme
only happening among related classifiers [9]. This process is
described as :

Σx∈[A](t−GAx)× numerosity(x)

Σx∈[A] numerosity(x)
> θGA (3)

where t is the current time step and GAx is the time step when
the classifier x was created but never been in such an [A] or
was last in an action set in which the GA was invoked. The
numerosity of x indicates the number of classifiers with the
same conditions and actions. θGA is a threshold.

When Niche GA is triggered, two parent classifiers are
selected with a probability proportional to their fitnesses, usu-
ally Roulette Wheel Selection is used in practice [7]. Standard
crossover and mutation operators perform on them to get
two offspring classifiers. Then, GA subsumption takes over
to check if the condition part is logically subsumed by the
condition of an accurate and sufficiently experienced parent
[22].

The fitness calculation is the main difference between
accuracy-based XCS and traditional strength-based LCS.
When a classifier j is created, its initial prediction is denoted
as p0j , prediction error as ϵ0j and fitness as F 0

j . Then, pj is
updated by equation (1), ϵj updated by equation (4), and Fj

updated by equation (5).

ϵj ← ϵj + βe(|P − pj | − ϵj) (4)

where ϵj is the prediction error of classifier j, βe is the error
learning rate, |P − pj | is the target prediction error towards
which ϵj is updated.

Fj ← Fj + βf (κ
′

j − Fj) (5)

where βf is the fitness learning rate, classifier j’s fitness Fj is
updated towards its relative accuracy κ

′

j calculated by equation
(6) and (7):

κj =

{
1 if ϵj < ϵ0
α(ϵj/ϵ0)

−v otherwise
(6)

where ϵ0 is a threshold that decides all classifiers’ accuracies
are equal if their prediction errors are below it, or decreased by
α and v. Once κj , j ∈ [A] have been updated, each classifier’s
relative accuracy κ

′

j is updated by:

κ
′

j =
κj × numerosity(j)

Σx∈[A] κx × numerosity(x)
(7)

which normalizes the accuracies so that they sum up to 1.
In short, a classifier’s fitness is an inverse function of its
prediction error, which is ignored if below ϵ0.

IV. EXPERIMENTS

A sequential decision task is designed to test the perfor-
mance of our modified XCS on the NAO robot in dynamic
environments. The goal of the task is to make the NAO
learn the combination of actions to find a target object and
relearn the strategy as fast as possible when the environment
is changed.

However, the experiment of XCS on real robots needs to
consider more practical issues than computer simulations, e.g.,
the initialization of the robot’s state which should be done
reliably by the robot itself for several times, and the precision
of its sensory readings, also its battery level that guarantees the
experiment running for several minutes. Although NAO is a
mobile robot, its localization and navigation are difficult issues
by themselves in an open environment. Therefore, we decided
to test XCS’s performance in a task that does not require
NAO’s mobility. The following parts describe the experiment
environment for the NAO and parameter settings for XCS,
followed by experiment results and analysis.

A. Environment

The NAO is placed on a table, with power connected, see
Fig.2(a). The forehead camera is used as the environmental
input (320x240 resolution, 10 fps) of XCS and the action of
the NAO is to move around its head which has two degrees of
freedom. A GUI shows what the NAO sees in real time and
has a control over the experiment, see Fig.2(b). The goal state
of the NAO is defined as to find a red object and make part of
it in the central view field (see Fig.2(c)). After several explore
trials, the NAO is expected to learn a policy to quickly find
the target object.



(a) NAO on a table (b) GUI (c) One goal state (d) Part of target found

Fig. 2. Experiment environment of the NAO searching task

1) State Representation: Every input image is segmented
into 9 parts (see Fig.2(d)), each part represented by one binary
bit which takes value 1 if there are more than M red pixels
in that part and 0 otherwise. For example, the bit string
representation of Fig.2(d) is 100000000. Similarly, Fig.2(c) is
represented as 110110000.

2) Action Representation : The actions are encoded as 00
(move up), 01 (move right), 10 (move down), 11 (move left).
The NAO head can pitch or yaw with a range of -0.67 to 0.51
radial (−38.5◦ to 29.5◦) and -2.079 to 2.079 radial (−119.5◦ to
119.5◦) separately. On each movement of the head, 0.1 radial
is changed on current state with a speed of 0.05 radial/s. A
boundary is defined as [−pitch, pitch]×[−yaw, yaw]. When-
ever the boundary is reached by the NAO, it fails the trial and
is reset to the initial state to start a new trial.

3) Reward : A reward of 1000 is given when the fifth
bit of the binary input string is 1, which represents the center
part of the view field. In other cases, no reward is given to ’0’
bits and a reward of 100 is given to every other ’1’ bit. This
should help the NAO to reach the goal state after only part of
the target is seen.

4) A trial : An experiment consists of several trials and
the NAO starts a trial from (0,0) position, with an empty initial
[P] of classifiers or loads a population of classifiers from a file.
It takes an image and sets its state using the aforementioned
representation. While the goal state is not achieved or the
boundary is not touched, the NAO keeps taking one action
and capturing one image right after the action. Otherwise, it
terminates this trial and returns to the initial state, starts a new
trial or ends the experiment. In case of endless searching, the
trial ends anyway after Ns steps.

B. Parameter Settings

The parameter settings take a reference of Wilson’s woods2
example [7] (see Table I). The main difference is the separate
learning rates that βp is for prediction update, βϵ for error
update and βf for fitness update. All of them are initialized
with the default learning rate 0.2 and can be changed in
dynamic experiments. Other changes of the parameters include
the population size limit and GA threshold, both are decreased
due to much less experiment trials compared with the thou-
sands of trials in woods2. In our experiments, the movement
boundary is [−0.5, 0.5] × [−0.5, 0.5], in other words, it is a
11 × 11 maze in which the NAO always starts from (0, 0).

TABLE I
XCS PARAMETER SETTINGS FOR NAO SEARCHING TASK

Parameter Notation Value

Population size N 100
discount factor γ 0.7
Prediction learning rate βp 0.2
Error learning rate βϵ 0.2
Fitness learning rate βf 0.2
Crossover probability χ 0.8
Mutation probability µ 0.04
Accuracy criterion ϵ0 10
Accuracy falloff rate α 0.1
Accuracy exponent v 5
Prediction initial p0 10
Error initial ϵ0 0
Fitness initial f0 0.01
Trial step limit Ns 20
Hash probability P# 0.6
GA threshold θGA 5
Deletion threshold θDel 20

In case of endless search, the maximal step in one trial is no
more than Ns = 20.

C. Dynamic Environments

The environment can be changed when the NAO evaluates
that it has learned the optimal policy to achieve the goal in one
exploit trial, otherwise, it just keeps learning in explore trials.
However, the robot does not change the environment by itself
in this scenario, so the text-to-speech function of NAO is used
to request the human operator to change the target object’s
position.

Equivalently, the orientation of the NAO’s body is changed
to simplify the operation. Several marks are made on the table
to control the change. The complexity of this task can be
changed easily with different spacial relations between the
NAO and the target image.

D. Results

The first experiment proves that consistent actions within
our explore/exploit framework outperforms all the others.
Based on this result, a relearning task shows that a higher
prediction learning rate plays a key role when the old knowl-
edge does not apply any more. All the results are the average



TABLE II
AVERAGE TIME SPENT IN ONE TRIAL

Condition Time (s)

uniform actions within Wilson’s framework 34.2

semi-uniform actions within Wilson’s framework 30.5

semi-uniform actions within our framework 24.4

consistent actions within Wilson’s framework 20.2

consistent actions within our framework 19.5

of 10 runs, each of which has 20 explore/exploit trials and 2
test trials.

1) Different actions within two frameworks : In this
learning problem, 2 steps left are needed to reach the goal state.
Different actions and explore/exploit frameworks are tested
under the same parameters, Fig.3 gives the average steps per
trial and Table II compares the average time spent in one trial.
The worst case is the pure random action exploration which
is quite inefficient for robotic tasks because learning happens
even when the state of robot does not change. Semi-uniform
actions improve the result with half chance of greedy actions.
Furthermore, consistent actions make the learning faster that
it steadily decreases from the 10th trial (see Fig.3(a)). Due
to that the NAO keeps performing the same action until its
state changes, it maintains much less macroclassifiers to solve
the problem, see Fig.3(b). Also, an average around 5 steps
happen a lot which probably means a failure trial where the
boundary of the wrong direction is reached. Our framework
enables a better performance that the NAO asks for a change
and reacts to it immediately when the learned knowledge still
applies to the new environment. In this case, turning one step
left achieves the goal state.

2) Relearning with different learning rates : First, the
NAO was trained with a 4 steps task, 2 steps up and 2 steps
left. Table III gives some of the result classifiers. The first
rule is generated by covering and not updated yet. The second
rule is the most experienced one and has the highest fitness.
It advocates action ’11’ ( turning left ) when no part of the
red target is found. The third rule tells that when the left up
corner has part of the target object, action ’00’ ( turn up ) is
preferred.

Then, the changed environment needs 3 steps right to reach
the goal state, which means the old knowledge can not solve
the new problem and even misleads the actions in the initial
state. In the beginning, the NAO always turned left using the
second rule. After reaching the left boundary for several times,
the second rule became inaccurate and the fourth rule in Table
III took in charge, suggesting turn right. The last rule also
encourages turning right and has a higher prediction because
this state is closer to the goal state.

Despite of the rules, Fig.4 shows that the prediction learning
rate of 0.8 performs better than the default 0.2 and stably
converges around the 15th trial.

TABLE III
POPULATION OF CLASSIFIERS

Condition Action Prediction Error Fitness Exp. Num.

1001#0000 01 10 0 0.01 0 1

#0###0##0 11 355.7 95.1 0.99 13 5

1#00#0### 00 453.6 116.2 0.94 11 1

0##00#00# 01 262.6 40.1 0.41 16 9

0#0#01##0 01 524.9 139.4 0.62 14 3

V. CONCLUSION

This paper presents a version of Extended Classifier System
(XCS) on a humanoid NAO robot. The alternative framework
between exploration and exploitation has been changed into
a more efficient one, which is reasonable for robotic tasks.
Despite of learning a complete, accurate, and maximally gen-
eral map of an environment, the XCS utilizes external memory
to store the current optimal policy which is supplementary to
the traditional XCS without internal memory. In the exploit
trials, not only greedy actions are selected, but also the
goal state is remembered to evaluate the current environment.
This guarantees that relearning happens only when necessary.
Furthermore, the prediction learning rate is found to have more
influence on the performance than the error learning rate and
the fitness learning rate in dynamic environments.

Our research opens the door of further applications of LCS
on humanoid robots. In future work, more advanced computer
vision algorithms are needed to enrich the sensory input. Also,
complex combinations of behaviors are required which can be
obtained by increasing the environment’s complexity. And in
such an environment, the reliance on a priori knowledge should
be unnecessary that the state boundaries should be decided
by the system itself rather than be programmed by human
operators.
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